4,530 research outputs found

    Tukushi modulates Xnr2, FGF, and and BMP signalling: Regulation of Xenopus Germ Layer Formation

    Get PDF
    BACKGROUND: Cell-cell communication is essential in tissue patterning. In early amphibian development, mesoderm is formed in the blastula-stage embryo through inductive interactions in which vegetal cells act on overlying equatorial cells. Members of the TGF-beta family such as activin B, Vg1, derrière and Xenopus nodal-related proteins (Xnrs) are candidate mesoderm inducing factors, with further activity to induce endoderm of the vegetal region. TGF-beta-like ligands, including BMP, are also responsible for patterning of germ layers. In addition, FGF signaling is essential for mesoderm formation whereas FGF signal inhibition has been implicated in endoderm induction. Clearly, several signaling pathways are coordinated to produce an appropriate developmental output; although intracellular crosstalk is known to integrate multiple pathways, relatively little is known about extracellular coordination. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that Xenopus Tsukushi (X-TSK), a member of the secreted small leucine rich repeat proteoglycan (SLRP) family, is expressed in ectoderm, endoderm, and the organizer during early development. We have previously reported that X-TSK binds to and inhibits BMP signaling in cooperation with chordin. We now demonstrate two novel interactions: X-TSK binds to and inhibits signaling by FGF8b, in addition to binding to and enhancement of Xnr2 signaling. This signal integration by X-TSK at the extracellular level has an important role in germ layer formation and patterning. Vegetally localized X-TSK potentiates endoderm formation through coordination of BMP, FGF and Xnr2 signaling. In contrast, X-TSK inhibition of FGF-MAPK signaling blocks ventrolateral mesoderm formation, while BMP inhibition enhances organizer formation. These actions of X-TSK are reliant upon its expression in endoderm and dorsal mesoderm, with relative exclusion from ventrolateral mesoderm, in a pattern shaped by FGF signals. CONCLUSIONS/SIGNIFICANCE: Based on our observations, we propose a novel mechanism by which X-TSK refines the field of positional information by integration of multiple pathways in the extracellular space

    Application of electron multiplying CCD technology in space instrumentation

    Get PDF
    Electron multiplying CCD (EMCCD) technology has found important initial applications in low light surveillance and photon starved scientific instrumentation. This paper discusses the attributes of the EMCCD which make it useful for certain space instruments, particularly those which are photon starved, and explores likely risks from the radiation expected in such instruments

    Low noise charge injection in the CCD22

    Get PDF
    The inclusion of a charge injection structure on a charge coupled device (CCD) allows for the mitigation of charge transfer loss which can be caused by radiation induced charge trapping defects. Any traps present in the pixels of the CCD are filled by the injected charge as it is swept through the device and consequently, the charge transfer efficiency is improved in subsequently acquired images. To date, a number of different types of CCD have been manufactured featuring a variety of charge injection techniques. The e2v Technologies CCD22, used in the EPIC MOS focal plane instruments of XMM-Newton, is one such device and is the subject of this paper. A detailed understanding of charge injection operation and the use of charge injection to mitigate charge transfer losses resulting from radiation damage to CCDs will benefit a number of space projects planned for the future, including the ESA GAIA and X-ray Evolving Universe Spectrometry (XEUS) missions.The charge injection structure and mode of operation of the CCD22 are presented, followed by a detailed analysis of the uniformity and repeatability of the charge injection amplitude across the columns of the device. The effects of proton irradiation on the charge injection characteristics are also presented, in particular the effect of radiation induced bright pixels on the injected charge level

    HDR UK supporting mobilising computable biomedical knowledge in the UK

    Get PDF
    Computable biomedical knowledge (CBK) represents an evolving area of health informatics, with potential for rapid translational patient benefit. Health Data Research UK (HDR UK) is the national Institute for Health Data Science, whose aim is to unite the UK’s health data to enable discoveries that improve people’s lives. The three main components include the UK HDR Alliance of data custodians, committed to making health data available for research and innovation purposes for public benefit while ensuring safe use of data and building public trust, the HDR Hubs, as centres of expertise for curating data and providing expert domain-specific services, and the HDR Innovation Gateway (‘Gateway’), providing discovery, accessibility, security and interoperability services. To support CBK developments, HDR UK is encouraging use of open data standards for research purposes, with guidance around areas in which standards are emerging, aims to work closely with the international CBK community to support initiatives and aid with evaluation and collaboration, and has established a phenomics workstream to create a national platform for dissemination of machine readable and computable phenotypical algorithms to reduce duplication of effort and improve reproducibility in clinical studies

    A New Approach of Modified Submerged Patch Clamp Recording Reveals Interneuronal Dynamics during Epileptiform Oscillations

    Get PDF
    Highlights • Simultaneous epileptiform LFPs and single-cell activity can be recorded in the membrane chamber. • Interneuron firing can be linked to epileptiform high frequency activity. • Fast ripples, unique to chronic epilepsy, can be modeled in ex vivo tissue from TeNT-treated rats. Traditionally, visually-guided patch clamp in brain slices using submerged recording conditions has been required to characterize the activity of individual neurons. However, due to limited oxygen availability, submerged conditions truncate fast network oscillations including epileptiform activity. Thus, it is technically challenging to study the contribution of individual identified neurons to fast network activity. The membrane chamber is a submerged-style recording chamber, modified to enhance oxygen supply to the slice, which we use to demonstrate the ability to record single-cell activity during in vitro epilepsy. We elicited epileptiform activity using 9 mM potassium and simultaneously recorded from fluorescently labeled interneurons. Epileptiform discharges were more reliable than in standard submerged conditions. During these synchronous discharges interneuron firing frequency increased and action potential amplitude progressively decreased. The firing of 15 interneurons was significantly correlated with epileptiform high frequency activity (HFA; ~100–500 Hz) cycles. We also recorded epileptiform activity in tissue prepared from chronically epileptic rats, treated with intrahippocampal tetanus neurotoxin. Four of these slices generated fast ripple activity, unique to chronic epilepsy. We showed the membrane chamber is a promising new in vitro environment facilitating patch clamp recordings in acute epilepsy models. Further, we showed that chronic epilepsy can be better modeled using ex vivo brain slices. These findings demonstrate that the membrane chamber facilitates previously challenging investigations into the neuronal correlates of epileptiform activity in vitro

    GI3: THE EFFECT OF AN OPEN ACCESS ENDOSCOPY SERVICE ON PRESCRIBING COSTS OF ULCER-HEALING DRUGS

    Get PDF

    PIC10 The Influence of Case Mix Bias On Costs of Hospitalisation for Lower Respiratory Tract Infection

    Get PDF
    corecore